ABCDE is a regular pentagon and bisector of ∠ BAE meets CD at M. If bisector of ∠ BCD meets AM at P, find ∠ CPM.


Given: ABCDE is a regular pentagon. The bisector of ∠ BAE meets CD at M and bisector of ∠ BCD meets AM at P.
To find: The measure of ∠ CPM.
Proof: Each angle of a pentagon =
=
=
=
=
= 108°
In quadrilateral ABCM,
∠ BAM + ∠ B + ∠ C + ∠ CMP = (2n - 4) right angles
= (2 × 4 - 4) right angles
= 4 right angles
= 4  × 90°
= 360°
+108° +108° +∠ CMP = 360°
                 ⇒ 270° +∠ CMP = 360°
                          ⇒ ∠ CMP = 360° -270°
                          ⇒ ∠ CMP = 90°
∠ PCM = ∠ BCM = × 108° = 54°
In Δ CPM, ∠ CPM + ∠ PCM + ∠ CMP = 180° [Sum of the three angles of a triangle is 180° ]
          ⇒ ∠ CPM + 54° + 90° = 180°
                 ⇒ ∠ CPM + 144° = 180°
                            Þ ∠ CPM = 180° - 144° = 36°
90
1