Prove the following using the principle of mathematical induction for all n ∈ N
(2n + 7) < (n + 3)2.
Let the given statement be P(n), as
P(n):(2n + 7) < (n + 3)2
First, we check if it is true for n = 1,
P(1): (2 + 7) < (4)2;
∴ It is true for n = 1.
Now we assume that it is true for some positive integer k, such that
P(k):(2k + 7) < (k + 3)2
We shall prove that P(k + 1)is true,
⇒ (2k + 7) + 2 < (k + 3)2 + 2
⇒ 2(k + 1) + 7 < k2 + 6k + 11
⇒ 2(k + 1) + 7 < k2 + 6k + 11 + (2k + 5)
⇒ 2(k + 1) + 7 < k2 + 8k + 16
⇒ 2(k + 1) + 7 < (k + 4)2
We proved that P(k + 1) is true.
Hence by principle of mathematical induction it is true for all n ∈ N.