If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.
Let a and d be the first term and common difference of A.P.
Given, Sum of n terms of A.P. = Sn = 3n2 + 5n ………….(I)
mth term of A.P. = tm = 164 ……………………….(III)
⇒ tm = a + (m – 1)d …………………..(IV)
Equating (I) and (II)
⇒ 2an + n2d – dn = 6n2 + 5n
⇒ (2a – d)n + n2d = 6n2 + 10n
Comparing the coefficients of n2, we get
d = 6
Comparing the coefficients of n, we get
2a – d = 10
Putting the value d = 6
⇒ 2a – 6 = 10 ⇒ 2a = 10 + 6
⇒ 2a = 16
⇒ a = 8
mth term = tm = 164 = 8 + (m – 1)6
⇒ 164 – 8 = (m – 1)6
⇒ m – 1 = 156/6
⇒ m – 1 = 26
⇒ m = 26 + 1
∴ m = 27