Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A. P. and the ratio of 7th and (m – 1)th numbers is 5 : 9. Find the value of m.
Let A1, A2, … Am be m numbers such that 1, A1, A2, … Am, 31 is an A.P.
Here, First term = a = 1,
Last term = b = 31,
Total no. of terms = n = m + 2
∴ 31 = 1 + (m + 2 – 1) d
⇒ 30 = (m + 1)d
⇒
A1 = a + d
A2 = a + 2d
A3 = a + 3d …
∴ A7 = a + 7d
Am-1 = a + (m – 1)d
Also given,
⇒
⇒
⇒
⇒
⇒ 9 (m + 211) = 5 (31m – 29)
⇒ 9m + 1899 = 155m - 145
⇒ 155m – 9m = 1899 + 145
⇒ 146m = 2044
∴ m = 14