Find four numbers forming a geometric progression in which the third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
Given: a3 = a1 + 9 and a2 = a4 + 18
Let a1 = a, a2 = ar, a3 = ar2, a4 = ar3
Here,
a3 = a1 + 9
⇒ ar2 = a + 9
⇒ ar2 – a = 9
⇒ a(r2 – 1) = 9 – 1
and,
a2 = a4 + 18
⇒ ar= ar3 + 18
⇒ ar – ar3 = 18
⇒ ar(1 – r2) = 18 – 2
Divide eq –2 by eq –1
⇒
⇒
⇒ r = – 2
Substitute r in eq—1
a × ((-2)2 – 1) = 9
a × (4 – 1) = 9
a × (3) = 9
a = = 3
∴ G.P is : 3 , 3(– 2), 3(– 2)2, 3(– 2)3
⇒ 3, —6 , 12 , —16
∴ G.P is 3, —6, 12, —16