If , then show that a, b, c and d are in G.P.
It is given that,
On cross multiplying, we get -
(a + bx)(b - cx) = (b + cx)(a - bx)
⇒ ab - acx + b2x - bcx2 = ab - b2x + acx - bcx2
⇒ 2b2x = 2acx
⇒ b2 = ac
…(1)
Also,
On cross multiplying, we get -
⇒ (b + cx)(c - dx) = (c + dx)(b - cx)
⇒ bc - bdx + c2x - cdx2 = bc + bdx - c2x - cdx2
⇒ 2c2x = 2bdx
⇒ c2 = bd
…(2)
From (1) and (2), we obtain
Thus, a, b, c, and d are in G.P.