Prove that cos 4x = 1 – 8sin2 x cos2 x
To prove cos 4x = 1 – 8sin2 x cos2 x
RHS = 1 – 8sin2 x cos2 x
LHS = cos 4x
= cos 2(2x)
= 1 – 2 sin2 2x [cos 2A = 1 – 2 sin2 A]
= 1 – 2(2 sin x cos x)2[sin2A = 2sin A cosA]
= 1 – 8 sin2 x cos2 x
∴ LHS = RHS
Hence, proved.