If angles A, B, C and D of the quadrilateral ABCD, taken in order, are in the ratio 3:7:6:4, then ABCD is a
Given: Ratio of angles is 3: 7: 6: 4
Let the angles be 3x, 7x, 6x and 4x.
Sum of all angles of a quadrilateral is 360°
⇒ 3x + 7x + 6x + 4x = 360°
⇒ 20x = 360°
⇒ x = 18°
Now,
Angles of quadrilateral are
∠A = 3x = 3 × 18° = 54°
∠B = 7x = 7 × 18° = 126°
∠C = 6x = 6 × 18° = 108°
∠D = 4x = 4 × 18° = 72°
Extend DC to E
Now,
∠BCE + ∠BCD = 180° [∵ sum of angles on a straight line = 180°]
⇒ ∠BCE + ∠BCD = 180°
⇒ ∠BCE + 108° = 180°
⇒ ∠BCE = 180° – 108°
⇒ ∠BCE = 72°
∵ ∠BCE = ∠ADC = 72°
∴ BC ∥ AD
Hence, it is a trapezium.