In a right angle triangle ABC, right angle is at B, if
then find the value of
A. sin A cosC + cos A sin C
We have

Given that, tan A = √3/1
And tan A is given by,
![]()
⇒ ![]()
⇒ perpendicular = √3x and base = x
Then, we can use Pythagoras theorem in ∆ABC,
(hypotenuse)2 = (perpendicular)2 + (base)2
⇒ (hypotenuse)2 = (√3x)2 + (x)2
⇒ (hypotenuse)2 = 3x2 + x2 = 4x2
⇒ hypotenuse = √(4x2) = 2x
We have, AB = √3x, BC = x and AC = 2x.
Using these values,
![]()
⇒ ![]()
⇒ ![]()
⇒
…(i)
Similarly, ![]()
⇒ ![]()
⇒
…(ii)
Also,
![]()
⇒ ![]()
⇒ ![]()
⇒
…(iii)
Similarly, ![]()
⇒ ![]()
⇒
…(iv)
We have to solve: sin A cos C + cos A sin C.
Substituting equations (i), (ii), (iii) & (iv) in above,
sin A cos C + cos A sin C = ![]()
⇒ sin A cos C + cos A sin C = 1/4 + 3/4
⇒ sin A cos C + cos A sin C = 4/4 = 1
Thus, sin A cos C + cos A sin C = 1.