The equal sides of an isosceles triangle are 8 centimetres long and the radius of its circumcircle is 5 centimetres. Calculate the length of its third side.
AB = AC = 8 cm
AJ = BJ = CJ = 5 cm
Let, JE = y cm and BE = x cm
In ΔJBE we have,
∠JEB = 90°
BE = x cm
JE = y cm
BJ = 5 cm
∴ x2 + y2 = 52
⇒ x2 = 25 – y2 ……… (1)
In ΔABE we have,
∠AEB = 90°
BE = x cm
AE =(AJ + JE)=(5 + y) cm
AB = 8 cm
∴ x2 + (5 – y)2 = 82
⇒ x2 = 64 – (5 – y)2……… (2)
From (1) and (2) we have,
⇒ 25 – y2 = 64 – (5 – y)2
⇒ 25 – y2 = 64 – 25 + 10y – y2
⇒ 10y = 14
⇒ y = 1.4
Putting the value y = 1.4 in (1) we get,
⇒ x2 = 25 – (1.4)2
⇒ x2 = 25 – 1.96
⇒ x2 = 23.04
⇒ x = 4.8
∴ Length of the third side, BC = 2x = 2 × 4.8 = 9.6 cm