In Fig. 6.42, if lines PQ and RS intersect at point T, such that ∠ PRT = 40°, ∠ RPT = 95°and ∠ TSQ = 75°, find ∠ SQT.
It is given in the question that:
∠PRT = 40o
∠RPT = 95o and,
∠TSQ = 75o
Now according to the question,
∠PRT + ∠RPT + ∠PTR = 180o (Sum of interior angles of the triangle)
40o + 95o + ∠PTR = 180o
40o + 95o + ∠PTR = 180o
135o + ∠PTR = 180o
∠PTR = 45o
∠PTR = ∠STQ = 45o (Vertically opposite angles)
Now,
∠TSQ + ∠PTR + ∠SQT = 180o (Sum of the interior angles of the triangle)
75o + 45o + ∠SQT = 180o
120o + ∠SQT = 180o
∠SQT = 60o