The two parallel chords AB and CD with the lengths of 10 cm and 24 cm in a circle are situated on the opposite sides of the centre. If the distance between two chords AB and CD is 17 cm. then let us write by calculating, the length of the radius of the circle.
Given, AB = 10cm, CD = 24cm, PQ = 17cm
AP
Perpendicular from the center of the circle to any Chord bisects it in two line segments
AP
AP = 5cm
CQ
⇒ CQ
⇒ CQ = 12cm
In OAP, Using Pythagoras Theorem
OA2 = AP2 + OP2
⇒ OA2 = 52 + OP2
⇒ OA2 = 25 + OP2 ………… (1)
⇒ In OCQ, Using Pythagoras Theorem
⇒ OC2 = CQ2 + OQ2
⇒ OC2 = 122 + OQ2
⇒ OC2 = 144 + OQ2 ………. (2)
⇒ OC = OA
⇒ 144 + OQ2 = 25 + OP2
⇒ OP2-OQ2 = 119
⇒ (OP-OQ)(OP + OQ) = 119 (using (A2 + B2 = (A + B)(A-B))
⇒ OQ + OP = 17 ………. (3)
⇒ (OP-OQ)17 = 119
⇒ OP-OQ = 119/17
⇒ OP-OQ = 7 …….. (4)
Eq.3 + Eq.4
⇒ 2OP = 24
⇒ OP = 12cm
⇒ OP-OQ = 7
⇒ OQ = OP-7
⇒ OQ = 12-7
⇒ OQ = 5cm
In OAP, Using Pythagoras Theorem
⇒ OC2 = 144 + OQ2
⇒ OC2 = 144 + 25
⇒ OC = 13cm