Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
Let ABCD be a quadrilateral circumscribing a circle centred at O such that it touches the circle at point P, Q, R, S.
join the vertices of the quadrilateral ABCD to the centre of the circle.
Consider ΔOAP and ΔOAS,
AP = AS (Tangents from the same point)
OP = OS (Radii of the same circle)
OA = OA (Common side)
ΔOAP ≅ ΔOAS (SSS congruence criterion)
And thus, ∠ POA = ∠ AOS
∠1 = ∠ 8 Similarly,
∠2 = ∠ 3
∠4 = ∠ 5
∠6 = ∠ 7
∠1 + ∠ 2 + ∠ 3 + ∠ 4 + ∠ 5 + ∠ 6 + ∠ 7 + ∠ 8 = 360°
(∠ 1 + ∠ 8) + (∠ 2 + ∠ 3) + (∠ 4 + ∠ 5) + (∠ 6 + ∠ 7) = 360°
2∠ 1 + 2∠ 2 + 2∠ 5 + 2∠ 6 = 360°
2(∠ 1 + ∠ 2) + 2(∠ 5 + ∠ 6) = 360°
(∠ 1 + ∠ 2) + (∠ 5 + ∠ 6) = 180°
∠ AOB + ∠ COD = 180°
Similarly, we can prove that ∠ BOC + ∠ DOA = 180°
Hence, opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.