Solve the following differential equations:

Given Differential Equation is:
⇒
……(1)
Let us assume z = x + y
Differentiating w.r.t x on both sides we get,
⇒ ![]()
⇒ ![]()
⇒
……(2)
Substituting (2) in (1) we get,
⇒ ![]()
⇒ ![]()
Bringing like variables on same side(i.e, variable seperable technique) we get,
⇒ ![]()
We know that ![]()
⇒ ![]()
⇒ ![]()
We know that cos2z = cos2z – sin2z = 2cos2z – 1
⇒ 
⇒ 
⇒ ![]()
We know that 1 + tan2x = sec2x
⇒ ![]()
⇒ ![]()
Integrating on both sides we get,
⇒ ![]()
We know that:
(1) ∫sec2xdx = tanx + C
(2) ∫adx = ax + C
⇒ ![]()
Since z = x + y, we substitute this,
⇒ ![]()
⇒ ![]()
⇒ ![]()
∴ the solution for the given differential equation is
.