In Fig. 6.38, altitudes AD and CE of Δ ABCintersect each other at the point P. Showthat:
(i) Δ AEP ~ Δ CDP
(ii) Δ ABD ~ Δ CBE
(iii) Δ AEP ~ Δ ADB
(iv) Δ PDC ~ Δ BEC
(i) In ΔAEP and ΔCDP,
∠AEP = ∠CDP (Each 90°)
∠APE = ∠CPD (Vertically opposite angles)
Hence, by using AA similarity,
ΔAEP ΔCDP
(ii) In ΔABD and ΔCBE,
∠ADB = ∠CEB (Each 90°)
∠ABD = ∠CBE (Common)
Hence, by using AA similarity,
ΔABD ΔCBE
(iii) In ΔAEP and ΔADB,
∠AEP = ∠ADB (Each 90°)
∠PAE = ∠DAB (Common)
Hence, by using AA similarity,
ΔAEP ΔADB
(iv) In ΔPDC and ΔBEC,
∠PDC = ∠BEC (Each 90°)
∠PCD = ∠BCE (Common angle)
Hence, by using AA similarity,
ΔPDC ΔBEC