Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decresing on (0, ∞), if 0 < a < 1.
case I
When a > 1
let x1,x2 (0,)
We have, x1<x2
⇒ loge x1 < loge x2
⇒ f(x1) < f(x2)
So, f(x) is increasing in (0,)
case II
When 0 < a < 1
f(x) = loga x
when a<1 log a < 0
let x1<x2
⇒ log x1 < log x2
⇒ []
⇒ f(x1) > f(x2)
So, f(x) is decreasing in (0,)