Show that
decreases in the interval [0, ∞) and increases in the interval (-∞, 0].
We have,
![]()
Case 1
When x
[0,
)
Let
,
(0,
] and ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ f(x1)< f(x2)
f(x) is decreasing on[0,∞).
Case 2
When x
(-
,0]
Let
> ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
f(x) is increasing on(-∞,0].
Thus, f(x) is neither increasing nor decreasing on R.