Show that
is neither increasing nor decreasing on R.
We have,
![]()
Case 1
When x
[0,
)
Let
> ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
f(x1) < f(x2)
⇒
f(x) is decreasing on[0,∞).
Case 2
When x
(-
,0]
Let
> ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
f(x) is increasing on(-∞,0].
Thus, f(x) is neither increasing nor decreasing on R.