Solve the following system of the linear equations by Cramer’s rule:
3x + y + z = 2
2x – 4y + 3z = – 1
4x + y – 3z = – 11
Given: - Equations are: –
3x + y + z = 2
2x – 4y + 3z = – 1
4x + y – 3z = – 11
Tip: - Theorem – Cramer’s Rule
Let there be a system of n simultaneous linear equations and with n unknown given by
and let Dj be the determinant obtained from D after replacing the jth column by
Then,
provided that D ≠ 0
Now, here we have
3x + y + z = 2
2x – 4y + 3z = – 1
4x + y – 3z = – 11
So by comparing with the theorem, let's find D, D1, D2 and D3
Solving determinant, expanding along 1st row
⇒ D = 3[( – 4)( – 3) – (3)(1)] – 1[(2)( – 3) – 12] + 1[2 – 4( – 4)]
⇒ D = 3[12 – 3] – [ – 6 – 12] + [2 + 16]
⇒ D = 27 + 18 + 18
⇒ D = 63
Again,
Solving determinant, expanding along 1st row
⇒ D1 = 2[( – 4)( – 3) – (3)(1)] – 1[( – 1)( – 3) – ( – 11)(3)] + 1[( – 1) – ( – 4)( – 11)]
⇒ D1 = 2[12 – 3] – 1[3 + 33] + 1[ – 1 – 44]
⇒ D1 = 2[9] – 36 – 45
⇒ D1 = 18 – 36 – 45
⇒ D1 = – 63
Again
Solving determinant, expanding along 1st row
⇒ D2 = 3[3 + 33] – 2[ – 6 – 12] + 1[ – 22 + 4]
⇒ D2 = 3[36] – 2( – 18) – 18
⇒ D2 = 126
And,
⇒
Solving determinant, expanding along 1st row
⇒ D3 = 3[44 + 1] – 1[ – 22 + 4] + 2[2 + 16]
⇒ D3 = 3[45] – 1( – 18) + 2(18)
⇒ D3 = 135 + 18 + 36
⇒ D3 = 189
Thus by Cramer’s Rule, we have
⇒
⇒
⇒ x = – 1
again,
⇒
⇒
⇒ y = 2
and,
⇒
⇒
⇒ z = 3