Show that each of the following systems of linear equations has infinite number of solutions and solve:
x – y + 3z = 6
x + 3y – 3z = – 4
5x + 3y + 3z = 10
Given: - Three equation
x – y + 3z = 6
x + 3y – 3z = – 4
5x + 3y + 3z = 10
Tip: - We know that
For a system of 3 simultaneous linear equation with 3 unknowns
(iv) If D ≠ 0, then the given system of equations is consistent and has a unique solution given by
(v) If D = 0 and D1 = D2 = D3 = 0, then the given system of equation may or may not be consistent. However if consistent, then it has infinitely many solution.
(vi) If D = 0 and at least one of the determinants D1, D2 and D3 is non – zero, then the system is inconsistent.
Now,
We have,
x – y + 3z = 6
x + 3y – 3z = – 4
5x + 3y + 3z = 10
Lets find D
⇒
Expanding along 1st row
⇒ D = 1[9 – ( – 3)(3)] – ( – 1)[(3)1 – 5( – 3)] + 3[3 – 5(3)]
⇒ D = 1[18] + 1[18] + 3[12]
⇒ D = 0
Again, D1 by replacing 1st column by B
Here
⇒
⇒ D1 = 6[9 – ( – 3)(3)] – ( – 1)[( – 4)3 – 10( – 3)] + 3[ – 12 – 30]
⇒ D1 = 6[9 + 9] + [ – 12 + 30] + 3[ – 42]
⇒ D1 = 6[18] + 18 – 3[42]
⇒ D1 = 0
Also, D2 by replacing 2nd column by B
Here
⇒
⇒ D2 = 1[ – 12 – ( – 3)10] – 6[3 – 5( – 3)] + 3[10 – 5( – 4)]
⇒ D2 = [ – 12 + 30] – 6[3 + 15] + 3[10 + 20]
⇒ D2 = 18 – 6[18] + 3[30]
⇒ D2 = 0
Again, D3 by replacing 3rd column by B
Here
⇒
⇒ D3 = 1[30 – ( – 4)(3)] – ( – 1)[(10 – 5( – 4)] + 6[3 – 15]
⇒ D3 = 1[30 + 12] + 1[10 + 20] + 6[ – 12]
⇒ D3 = 42 + 30 – 72
⇒ D3 = 0
So, here we can see that
D = D1 = D2 = D3 = 0
Thus,
Either the system is consistent with infinitely many solutions or it is inconsistent.
Now, by 1st two equations, written as
x – y = 6 – 3z
x + 3y = – 4 + 3z
Now by applying Cramer’s rule to solve them,
New D and D1, D2
⇒
⇒ D = 3 + 1
⇒ D = 4
Again, D1 by replacing 1st column with
⇒
⇒ D1 = 18 – 9z – ( – 1)( – 4 + 3z)
⇒ D1 = 14 – 5z
Again, D2 by replacing 2nd column with
⇒
⇒ D2 = – 4 + 3z – (6 – 3z)
⇒ D2 = – 10 + 6z
Hence, using Cramer’s rule
⇒
⇒
⇒
again,
⇒
⇒
⇒
Let, z = k
Then
And z = k
By changing value of k you may get infinite solutions