Find the The Slopes of the tangent and the normal to the following curves at the indicated points :
x = a (θ – sin θ), y = a(1 + cos θ) at
θ = – π/2
Given:
x = a(
) & y = a(1 + cos
) at ![]()
Here, To find
, we have to find
&
and and divide
and we get our desired
.
(xn) = n.xn – 1
⇒ x = a(
)
⇒
= a(
(
) –
(sin
))
⇒
= a(1 –
) ...(1)
(sinx) = cosx
⇒ y = a(1 + cos
)
⇒
= a(
(
) +
(cos
))
(cosx) = – sinx
(Constant) = 0
⇒
= a(
+ ( – sin
))
⇒
= a( – sin
)
⇒
= – asin
...(2)
⇒ 
⇒ ![]()
The Slope of the tangent is ![]()
Since, ![]()
⇒ 
sin(
) = 1
cos(
) = 0
⇒ ![]()
⇒ ![]()
⇒
= 1
The Slope of the tangent at x =
is 1
⇒ The Slope of the normal = ![]()
⇒ The Slope of the normal = 
⇒ The Slope of the normal = ![]()
⇒ The Slope of the normal = – 1