Find the The Slopes of the tangent and the normal to the following curves at the indicated points :
x = a cos3 θ, y = a sin3 θ at θ = π/4
Given:
x = acos3 & y = asin3
at
Here, To find , we have to find
&
and and divide
and we get our desired
.
(xn) = n.xn – 1
⇒ x = acos3
⇒ = a(
(cos3
))
(cosx) = – sinx
⇒ = a(3cos3 – 1
– sin
)
⇒ = a(3cos2
– sin
)
⇒ = – 3acos2
sin
...(1)
⇒ y = asin3
⇒ = a(
(sin3
))
(sinx) = cosx
⇒ = a(3sin3 – 1
cos
)
⇒ = a(3sin2
cos
)
⇒ = 3asin2
cos
...(2)
⇒
⇒
⇒ = – tan
The Slope of the tangent is – tan
Since,
⇒ = – tan(
)
⇒ = – 1
tan(
) = 1
The Slope of the tangent at x =
is – 1
⇒ The Slope of the normal =
⇒ The Slope of the normal =
⇒ The Slope of the normal =
⇒ The Slope of the normal = 1