Find a point on the curve y = x3 – 3x where the tangent is parallel to the chord joining (1, – 2) and (2, 2).
Given:
The curve y = x3 – 3x
First, we will find the Slope of the tangent
y = x3 – 3x
(x3) –
(3x)
⇒ = 3x3 – 1 –
)
⇒ = 3x2 – 3 ...(1)
The equation of line passing through (x0,y0) and The Slope m is y – y0 = m(x – x0).
so The Slope, m =
The Slope of the chord joining (1, – 2) & (2,2)
⇒
⇒
⇒ = 4 ...(2)
From (1) & (2)
3x2 – 3 = 4
⇒ 3x2 = 7
⇒ x2 =
⇒ x =
y = x3 – 3x
⇒ y = x(x2 – 3)
⇒ y = ((
)2 – 3)
⇒ y = ((
– 3)
⇒ y = (
)
⇒ y = (
)
Thus, the required point is x = & y =
(
)