Find the angle to intersection of the following curves :
y = x2 and x2 + y2 = 20
Given:
Curves y = x2 ...(1)
& x2 + y2 = 20 ...(2)
First curve y = x2
⇒ m1 = 2x ...(3)
Second curve is x2 + y2 = 20
Differentiating above w.r.t x,
⇒ 2x + 2y. = 0
⇒ y. = – x
⇒ m2 ...(4)
Substituting (1) in (2),we get
⇒ y + y2 = 20
⇒ y2 + y – 20 = 0
We will use factorization method to solve the above Quadratic equation
⇒ y2 + 5y – 4y – 20 = 0
⇒ y(y + 5) – 4(y + 5) = 0
⇒ (y + 5)(y – 4) = 0
⇒ y = – 5 & y = 4
Substituting y = – 5 & y = 4 in (1) in (2),
y = x2
when y = – 5,
⇒ – 5 = x2
⇒ x
when y = 4,
⇒ 4 = x2
⇒ x = ±2
Substituting above values for m1 & m2,we get,
when x = 2,
m14
when x = 1,
m14
Values of m1 is 4 & – 4
when y = 4 & x = 2
m2
when y = 4 & x = – 2
m2
Values of m2 is &
when m1 = ∞ & m2 = 0
tanθ
tanθ
tanθ
θ = tan – 1()
θ≅77.47