Given:
Curves +
1 ...(1)
& x2 + y2 = ab ...(2)
Second curve is x2 + y2 = ab
y2 = ab – x2
Substituting this in equation (1),
+
1
1
x2b2 + a3b – a2x2 = a2b2
x2b2 – a2x2 = a2b2 – a3b
x2(b2 – a2) = a2b(b – a)
x2
x2
x2
∴a2 – b2 = (a + b)(a – b)
x
...(3)
since , y2 = ab – x2
y2 = ab – (
)
y2
y2
y = ±
...(4)
since ,curves are +
1 & x2 + y2 = ab
Differentiating above w.r.t x,
⇒ .
= 0
⇒ .
=
⇒
⇒
⇒ m1 ...(5)
Second curve is x2 + y2 = ab
⇒ 2x + 2y.0
⇒ m2 ...(6)
Substituting (3) in (4), above values for m1 & m2,we get,
At (,
) in equation(5),we get
⇒ m1
At (,
) in equation(6),we get
m2
when m1 & m2
tanθ
tanθ
tanθ
tanθ
tanθ
tanθ
tanθ
θ = tan – 1(
)