Find the angle to intersection of the following curves :
x2 + y2 = 2x and y2 = x
Given:
Curves x2 + y2 = 2x ...(1)
& y2 = x ...(2)
Solving (1) & (2),we get
Substituting y2 = x in x2 + y2 = 2x
⇒ x2 + x = 2x
⇒ x2 – x = 0
⇒ x(x – 1) = 0
⇒ x = 0 or (x – 1) = 0
⇒ x = 0 or x = 1
Substituting x = 0 or x = 1in y2 = x ,we get,
when x = 0,
⇒ y2 = 0
⇒ y = 0
when x = 1,
⇒ y2 = 1
⇒ y = 1
The point of intersection of two curves are (0,0) & (1,1)
Now ,Differentiating curves (1) & (2) w.r.t x, we get
⇒ x2 + y2 = 2x
⇒ 2x + 2y. = 2
⇒ x + y. = 1
⇒ y. = 1 – x
...(3)
⇒ y2 = x
⇒ 2y.1
⇒ ...(4)
At (1,1) in equation(3),we get
m1 = 0
At (1,1) in equation(4),we get
m2
when m1 = 0 & m2
tanθ
tanθ
tanθ
tanθ
θ = tan – 1(
)
θ≅26.56