Find the angle to intersection of the following curves :
y = 4 –x2 and y = x2
Given:
Curves y = 4 – x2 ...(1)
& y = x2 ...(2)
Solving (1) & (2),we get
⇒ y = 4 – x2
⇒ x2 = 4 – x2
⇒ 2x2 = 4
⇒ x2 = 2
⇒ x = ±
Substituting in y = x2 ,we get
y = ()2
y = 2
The point of intersection of two curves are (,2) & (
, – 2)
First curve y = 4 – x2
Differentiating above w.r.t x,
⇒ = 0 – 2x
⇒ m1 = – 2x ...(3)
Second curve y = x2
Differentiating above w.r.t x,
⇒ = 2x
m2 = 2x ...(4)
At (,2),we have,
m1 = – 2x
⇒ – 2×
⇒ m1 = – 2
At (,2),we have,
m2 = – 2x
2 = 2
When m1 = – 2 & m2 = 2
tanθ
tanθ
tanθ
tanθ
θ = tan – 1()
θ≅38.94