Show that the following set of curves intersect orthogonally :
x3 – 3xy2 = – 2 and 3x2 y – y3 = 2
Given:
Curves x3 – 3xy2 = – 2 ...(1)
& 3x2y – y3 = 2 ...(2)
Adding (1) & (2),we get
⇒ x3 – 3xy2 + 3x2y – y3 = – 2 + 2
⇒ x3 – 3xy2 + 3x2y – y3 = – 0
⇒ (x – y)3 = 0
⇒ (x – y) = 0
⇒ x = y
Substituting x = y on x3 – 3xy2 = – 2
⇒ x3 – 3×x×x2 = – 2
⇒ x3 – 3x3 = – 2
⇒ – 2x3 = – 2
⇒ x3 = 1
⇒ x = 1
Since x = y
y = 1
The point of intersection of two curves is (1,1)
First curve x3 – 3xy2 = – 2
Differentiating above w.r.t x,
⇒ 3x2 – 3(1×y2 + x×2y) = 0
⇒ 3x2 – 3y2 – 6xy0
⇒ 3x2 – 3y2 = 6xy
⇒
⇒
⇒ m1 ...(3)
Second curve 3x2y – y3 = 2
Differentiating above w.r.t x,
⇒ 3(2x×y + x2×) – 3y2
0
⇒ 6xy + 3x23y2
0
⇒ 6xy + (3x2 – 3y2)0
⇒
⇒
⇒ m2 ...(4)
When m1 & m2 =
⇒ ×
= – 1
∴ Two curves x3 – 3xy2 = – 2 & 3x2y – y3 = 2 intersect orthogonally.