Show that the following set of curves intersect orthogonally :
x2 + 4y2 = 8 and x2 – 2y2 = 4.
Given:
Curves x2 + 4y2 = 8 ...(1)
& x2 – 2y2 = 4 ...(2)
Solving (1) & (2),we get,
from 2nd curve,
x2 = 4 + 2y2
Substituting on x2 + 4y2 = 8,
⇒ 4 + 2y2 + 4y2 = 8
⇒ 6y2 = 4
⇒ y2
⇒ y = ±
Substituting on y = ±, we get,
⇒ x2 = 4 + 2(±)2
⇒ x2 = 4 + 2()
⇒ x2 = 4 +
⇒ x2
⇒ x = ±
⇒ x = ±
∴ The point of intersection of two curves (,
) & (
,
)
Now ,Differentiating curves (1) & (2) w.r.t x, we get
⇒ x2 + 4y2 = 8
⇒ 2x + 8y. = 0
⇒ 8y. = – 2x
...(3)
⇒ x2 – 2y2 = 4
⇒ 2x – 4y.0
⇒ x – 2y.0
⇒ 4yx
⇒ ...(4)
At (,
) in equation(3),we get
m1
At (,
) in equation(4),we get
m2 = 1
when m1 & m2
⇒ ×
= – 1
∴ Two curves x2 + 4y2 = 8 & x2 – 2y2 = 4 intersect orthogonally.