Show that the following curves intersect orthogonally at the indicated points :
y2 = 8x and 2x2 + y2 = 10 at (1, 2√2)
Given:
Curves y2 = 8x ...(1)
& 2x2 + y2 = 10 ...(2)
The point of intersection of two curves are (0,0) & (1,2)
Now ,Differentiating curves (1) & (2) w.r.t x, we get
⇒ y2 = 8x
⇒ 2y.8
⇒
⇒ ...(3)
⇒ 2x2 + y2 = 10
Differentiating above w.r.t x,
⇒ 4x + 2y. = 0
⇒ 2x + y. = 0
⇒ y. = – 2x
...(4)
Substituting (1,2)for m1 & m2,we get,
m1
⇒
m1 = ...(5)
m2
⇒
m2 = ...(6)
when m1 & m2
⇒ ×
1
∴ Two curves y2 = 8x & 2x2 + y2 = 10 intersect orthogonally.