Verify Rolle’s theorem for each of the following functions on the indicated intervals :
First, let us write the conditions for the applicability of Rolle’s theorem:
For a Real valued function ‘f’:
a) The function ‘f’ needs to be continuous in the closed interval [a,b].
b) The function ‘f’ needs differentiable on the open interval (a,b).
c) f(a) = f(b)
Then there exists at least one c in the open interval (a,b) such that f’(c) = 0.
Given function is:
⇒ f(x) = sin4x + cos4x on
We know that sine and cosine functions are continuous and differentiable functions over R.
Let’s find the value of function ‘f’ at extremums
⇒ f(0) = sin4(0) + cos4(0)
⇒ f(0) = (0)4 + (1)4
⇒ f(0) = 0 + 1
⇒ f(0) = 1
⇒
⇒
⇒
⇒
We got . So, there exists a cϵ
such that f’(c) = 0.
Let’s find the derivative of the function ‘f’.
⇒
⇒
⇒ f’(x) = 4sin3xcosx–4cos3xsinx
⇒ f’(x) = 4sinxcosx(sin2x – cos2x)
⇒ f’(x) = 2(2sinxcosx)( – cos2x)
⇒ f’(x) = – 2(sin2x)(cos2x)
⇒ f’(x) = – sin4x
We have f’(c) = 0
⇒ – sin4c = 0
⇒ sin4c = 0
⇒ 4c = 0 or
⇒
∴ Rolle’s theorem is verified.