If 1+sin2θ = 3 sinθ . cosθ, then prove that tan θ = 1 or 1/2.
Given: 1+sin2θ =3 sin θ cos θ
Divide by cos2 θ to both the sides, we get
![]()
⇒ sec2 θ + tan2 θ = 3 tan θ
⇒ 1+ tan2 θ+ tan2 θ = 3tan θ
⇒ 2 tan2 θ –3tan θ +1 = 0
Let tanθ = x
⇒ 2x2 – 3x +1 = 0
⇒ 2x2 – 2x – x +1 = 0
⇒ 2x ( x – 1) – 1(x – 1) = 0
⇒ (2x – 1)(x – 1) = 0
Putting each of the factor = 0, we get
⇒ x = 1 or ![]()
And above, we let tan θ = x
![]()
Hence Proved