Given 5x – 7 < 3(x + 3) and
Let us consider the first inequality.
5x – 7 < 3(x + 3)
⇒ 5x – 7 < 3x + 9
⇒ 5x – 7 + 7 < 3x + 9 + 7
⇒ 5x < 3x + 16
⇒ 5x – 3x < 3x + 16 – 3x
⇒ 2x < 16
⇒ x < 8
∴ x ∈ (–∞, 8) (1)
Now, let us consider the second inequality.
⇒ 2 – 3x ≥ 2(x – 4)
⇒ 2 – 3x ≥ 2x – 8
⇒ 2 – 3x – 2 ≥ 2x – 8 – 2
⇒ –3x ≥ 2x – 10
⇒ 2x – 10 ≤ –3x
⇒ 2x – 10 + 10 ≤ –3x + 10
⇒ 2x ≤ –3x + 10
⇒ 2x + 3x ≤ –6x + 10 + 6x
⇒ 5x ≤ 10
⇒ x ≤ 2
∴ x ∈ (–∞, 2] (2)
From (1) and (2), we get
x ∈ (–∞, 8) ∩ (–∞, 2]
∴ x ∈ (–∞, 2]
Thus, the solution of the given system of inequations is (–∞, 2].