Show that for any sets A and B,
A ∪ (B – A) = A ∪ B
Let x ϵ A ∪ (B – A)
⇒ x ϵ A or x ϵ (B–A)
⇒ X ϵ A or x ϵ B or x ∉ A
⇒ x ϵ A or x ϵ B
⇒ x ϵ (A ∪ B)
∴ A ∪ (B – A) ⊂ (A ∪ B)…….(1)
Let and x ϵ (A ∪ B)
⇒ x ϵ A or x ϵ B
⇒ x ϵ A or x ϵ B and x ∉ A
⇒ x ϵ A or x ϵ B–A
⇒ x ϵ A ∪ (B–A)
∴ (A ∪ B) ⊂A ∪ (B – A)…….(2)
From (1) and(2), we get
A ∪ (B – A) = A ∪ B.