Prove that:
LHS
= sin 600° cos 390° + cos 480° sin 150°
= sin (90° × 6 + 60°) cos (90° × 4 + 30°) + cos (90° × 5 + 30°) sin (90° × 1 + 60°)
We know that when n is odd, sin → cos and cos → sin.
= [-sin 60°] cos 30° + [-sin 30°] cos 60°
= -sin 60° cos 30° - sin 30° cos 60°
= -[sin 60° cos 30° + cos 60° sin 30°]
We know that sin A cos B + cos A sin B = sin (A + B)
= -sin (60° + 30°)
= -sin 90°
= -1
= RHS
Hence proved.