If , then show that sin α + cos α = cos x.
Given
Dividing numerator And denominator on RHSBy cos α,
We know that
Consider sin α + cos α,
We know that sin(A +B) = sinA cosB + cosA sinB And cos(A +B) = cosA cosB - sinA sinB
= √2 cos x
∴ sin α + cos α = √2 cos x
Hence proved.