If
, then show that sin α + cos α =
cos x.
Given ![]()
Dividing numerator And denominator on RHSBy cos α,
![]()

We know that ![]()
![]()
![]()
![]()
Consider sin α + cos α,
![]()
We know that sin(A +B) = sinA cosB + cosA sinB And cos(A +B) = cosA cosB - sinA sinB

![]()
![]()
= √2 cos x
∴ sin α + cos α = √2 cos x
Hence proved.