Evaluate the following :

The given expression can also be written as
⇒
…(1)
⇒ ![]()
Now this term is in GP.
2, 4, 8…to n terms
∴ Common Ratio = ![]()
∴ Sum of GP for n terms =
…(2)
⇒ a = 2, r = 2, n = n
∴ Substituting the above values in (2) we get,
⇒ ![]()
⇒ 2n + 1 – 2.
⇒ ![]()
Now this term is in GP.
1, 3, 9…to n terms
∴ Common Ratio = r = ![]()
∴ Sum of GP for n terms =
…(2)
⇒ a = 1, r = 3, n = n
∴ Substituting the above values in (2) we get,
⇒ ![]()
⇒ ![]()
Now, Adding both these we will get the required solution.
⇒ 2n + 1 – 2 + ![]()
⇒ ![]()