Let f : R → R be the function defined by
. Then, find the range of f.
We have, ![]()
Let ![]()
⇒ 2y–ycosx = 1
⇒ -ycosx = 1-2y
⇒ ![]()
⇒ ![]()
Now, we know that range of cosx is [-1,1].
⇒ -1 ≤ cosx ≤ 1
⇒ ![]()
⇒ ![]()
On multiplying the inequality by -1 we get,
⇒ ![]()
Note : The sign of inequality is reversed if it is multiplied by a negative quantity.
⇒ ![]()
⇒ ![]()
Thus, range of ![]()