We know that,
A matrix, as we know, is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns.
Also,
We know that, the notation A = [aij]m×m indicates that A is a matrix of order m × n, also 1 ≤ i ≤ m, 1 ≤ j ≤ n; i, j ∈ N.
(i).We need to construct a matrix, a2×2, where
For a2×2,
1 ≤ i ≤ m
⇒ 1 ≤ i ≤ 2 [∵ m = 2]
And,
1 ≤ j ≤ n
⇒ 1 ≤ j ≤ 2 [∵ n = 2]
Put i = 1 and j = 1.
Put i = 1 and j = 2.
Put i = 2 and j = 1.
⇒ a21 = 0
Put i = 2 and j = 2.
⇒ a22 = 2
Let the matrix formed be A.
Substituting the values of a11, a12, a21 and a22, we get the matrix
(ii). We need to construct a matrix, a2×2, where
aij = |-2i + 3j|
For a2×2,
1 ≤ i ≤ m
⇒ 1 ≤ i ≤ 2 [∵ m = 2]
And,
1 ≤ j ≤ n
⇒ 1 ≤ j ≤ 2 [∵ n = 2]
Put i = 1 and j = 1.
a11 = |-2(1) + 3(1)|
⇒ a11 = |-2 + 3|
⇒ a11 = |1|
⇒ a11 = 1
Put i = 1 and j = 2.
a12 = |-2(1) + 3(2)|
⇒ a12 = |-2 + 6|
⇒ a12 = |4|
⇒ a12 = 4
Put i = 2 and j = 1.
a21 = |-2(2) + 3(1)|
⇒ a21 = |-4 + 3|
⇒ a21 = |-1|
⇒ a21 = 1
Put i = 2 and j = 2.
a22 = |-2(2) + 3(2)|
⇒ a22 = |-4 + 6|
⇒ a22 = |2|
⇒ a22 = 2
Let the matrix formed be A.
Substituting the values of a11, a12, a21 and a22, we get the matrix