Determine the maximum value of Z = 11x + 7y subject to the constraints:
2x + y ≤ 6, x ≤ 2, x ≥ 0, y ≥ 0
Given:
Z=11x+7y
It is subject to constraints
2x+y≤6, x≤2, x≥0, y≥0
Now let us convert the given inequalities into equation.
We obtain the following equation
2x+y≤6
⇒ 2x+y=6
x≤2
⇒ x=2
x ≥ 0
⇒ x=0
y ≥ 0
⇒ y=0
The region represented by 2x+y≤6:
The line 2x+y=6 meets the coordinate axes (3,0) and (0,6) respectively. We will join these points to obtain the line 2x+y=6. It is clear that (0,0) satisfies the inequation 2x+y≤6. So the region containing the origin represents the solution set of the inequation 2x+y≤6
The region represented by x≤2:
The line is parallel to y-axis and meets the x-axis at x=2.It is clear (0,0) satisfies the inequation x≤2. So the region containing the origin represents the solution set of the inequation x≤2
Region represented by x≥0 and y≥0 is first quadrant, Since every point in the first quadrant satisfies these inequations.
Plotting these equations graphically, we get
The shaded region OBDE is the feasible region is bounded, so, maximum value will occur at a corner point of the feasible region.
Corner Points are O (0, 0), B (0, 6), D (2, 2) and E (2, 0).
Now we will substitute these values in Z at each of these corner points, we get
Hence, the maximum value of Z is 42 at the point (0, 6).