Find
We have,
Putting xtanx = u and
u = xtanx
Taking log on both sides, we get
log u = tanx log x
Differentiating w.r.t x, we get
⇒
⇒
⇒ (i)
Now,
⇒
Differentiating w.r.t x, we get
⇒
⇒ (ii)
Now, y = u + v
⇒
On substituting the values of from (i) and (ii),we get
⇒
⇒