Consider the probability distribution of a random variable X:

Calculate (i)
(ii) Variance of X.
We have![]()

Var(X)=E(X2)-[E(X)]2
Where,![]()
And ![]()
∴0+0.25+0.6+0.6+0.60= 2.05
And E(X)2=0+0.25+1.2+1.8+2.40=5.65
(i)![]()
As we know Var(ax) = a2 var(x)
![]()
![]()
![]()
![]()
![]()
(ii) V(X)
Var(X)=E(X2)-[E(X)]2
= 5.65 – (2.05)2
= 5.65 - 4.2025
= 1.4475