If P(A) = 2|5, P(B) = 3|10 and P(A B) = 1|5, the P(A′|B′).P(B′|A′) is equal to


We have,


P(A’|B’) × P(B’) = P(A’ B’)


…(i)


P(B’|A’) × P(A’) = P(B’ A’)


…(ii)


On multiplying eq. (i) and (ii), we get




[P(A’ B’) = P[(A B)’]= 1 – P(A B)]




[Additive law of Probability]









Hence, the correct option is C

59
1