Find the real values of θ for which the complex number is purely real.
Let us assume the given complex number as
Multiplying and dividing with 1+2icos
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
For a complex number to be purely real, the imaginary part equals to zero.
⇒
⇒ 3cos=0 (∵ 1+4cos2θ≥1)
⇒ cos θ=0
⇒ , for n
I
∴ The values of θ to get the complex number to be purely real is for n
I.