Find the real values of θ for which the complex number
is purely real.
Let us assume the given complex number as ![]()
Multiplying and dividing with 1+2icos![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
We know that i2=-1
⇒ ![]()
⇒ ![]()
For a complex number to be purely real, the imaginary part equals to zero.
⇒ ![]()
⇒ 3cos
=0 (∵ 1+4cos2θ≥1)
⇒ cos θ=0
⇒
, for n
I
∴ The values of θ to get the complex number to be purely real is
for n
I.