Solve the system of equations Re(z2) = 0, |z| = 2.
Given:
⇒ Re(z2)=0 and |z|=2
Let us assume Z=x+iy
⇒ Re(z2)=0
⇒ Re((x+iy)2)=0
⇒ Re(x2+(iy)2+2(x)(iy))=0
⇒ Re(x2+i2y2+i(2xy))=0
We know that i2=-1
⇒ Re(x2-y2+i(2xy))=0
⇒ x2-y2=0----------------------(1)
⇒ |z|=2
⇒
⇒ (x2+y2)=22
⇒ (x2+y2)=4-------------------(2)
Solving (1) and (2) we get
⇒ x= and y=
.
∴ .