Express the following complex numbers in the form
tan α – i
Given Complex number is tan-i
We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number=
θ =arg(z)=argument of complex number=
We know that tanα is a periodic function with period .
We have lying in the interval
Case1:
⇒
⇒
⇒
⇒
Since sec is positive in the interval
⇒
⇒
⇒
Since cot is positive in the interval
⇒ (∵ θ lies in 4th quadrant)
⇒
⇒ z=sec(sin
-icos
)
∴ The polar form is z=sec(sin
-icos
)
Case2:
⇒
⇒
⇒
⇒
Since sec is negative in the interval
.
⇒
⇒
⇒
Since cot is negative in the interval
.
⇒ . (∵ θ lies in3rd quadrant)
⇒
⇒ z=-sec(-sin
+icos
)
⇒ z=sec(sin
-icos
)
∴ The polar form is z=sec(sin
-icos
).